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The fluid-implicit-particle method, FLIP, is extended to magnetohydrodynamic (MHD) 
flow in two or three dimensions. FLIP-MHD incorporates a Lagrangian representation of the 
field and is shown to preserve contact discontinuities, to preserve the Galilean invariance of 
the MHD flow equations, and to give a grid magnetic Reynolds number up to 16. The conser- 
vation of mass, momentum, magnetic flux, and energy are demonstrated by analysis and 
numerical examples. Results from numerical calculations in two dimensions of the convection 
of a contact discontinuity, Rayleigh-Taylore unstable flow, and a confined eddy are 
presented. 0 1991 Academic Press, Inc. 

I. INTRODUCTION 

A particle-in-cell (PIC) method, the fluid-implicit-particle method, FLIP [l], is 
extended to magnetohydrodynamic (MHD) flow. FLIP-MHD is used to study 
the effect of hydrodynamic instabilities on magnetic reconnection in the earth’s 
magnetosphere and similar problems that are dominated by flow at high Reynolds 
numbers. Such applications require a method with computational diffusion that 
does not increase with flow speed. Spectral methods have this property [6], but are 
less able to model discontinuities and shocks in the flow than are finite-difference 
methods. For the magnetosphere problem, adaptive zoning is also useful to resolve 
singularities and to model arbitrary geometries. With FLIP, these capabilities are 
available for fluid flows, and with FLIP-MHD, these capabilities are extended to 
magnetofluid flow. 

One can place FLIP between “classical” PIC [2], which uses particles to follow 
the mass motion of the fluid but calculates everything else on a grid, and smoothed- 
particle hydrodynamics (SPH), which uses particles but does not use a grid at all 
[3]. In FLIP, particles provide a Lagrangian description of the fluid that resolves 
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contact discontinuities, preserves translational and rotational invariance, and 
reduces computational diffusion of linear and angular momentum [4, 51. The inter- 
actions among the particles are calculated on a grid for convenience and economy. 
The present study extends FLIP to MHD by including information about the 
magnetic field among the attributes of the particles. 

Monaghan [3] gives a comprehensive review of “particle” MHD methods which 
is still current. As he notes, there have been three approaches to “particle” MHD, 
which we summarize very briefly here. 

There is “classical” PIC, with which Butler et al. [7] modeled a plasma focus 
experiment. They applied a specified magnetic pressure to cells in which there 
were no particles so that a magnetic field entered as an applied pressure boundary 
condition at the free surface of the plasma. 

There are hybrid PIC, finite-difference methods. For example, Brunel et al. [S] 
developed a particle MHD method in which particles represented certain properties 
of the fluid, while the magnetic field was treated on a grid exactly as in an ordinary 
finite difference method. The algorithm for solving Faraday’s law did not differ 
significantly from those used in typical finite difference calculations, except in the 
use of the predictor-corrector method to obtain approximate time-centering. 

There is the grid-free-particle model, the SPH-MHD algorithm, which Monaghan 
describes [3]. It has been applied with the greatest success to hydrodynamic flow 
in astrophysical problems. The approximations to the equations of motion in SPH 
preserve Galilean and rotational invariance and do not diffuse angular momentum. 
Particle interpenetration has been a problem in low speed flows, which Monaghan 
has addressed by reformulating the viscosity [22]. In SPH-MHD, the magnetic 
field is parceled among particles. The evolution of the field is computed particle by 
particle in the Lagrangian frame of each particle. 

The FLIP-MHD method lies between Brunei’s and Monaghan’s methods. Each 
particle is assigned data from which the magnetic field is computed each computa- 
tion step. In this respect, FLIP-MHD is like SPH. However, Faraday’s law is 
solved on a grid each step, and so, in this respect, FLIP-MHD is like Brunel’s 
method. Because the equations on the grid are solved in the Lagrangian frame in 
FLIP, convection is modeled by the motion of particles through the grid. Particle 
motion in flow without gradients (in the flow velocity) introduces no computational 
diffusion, and thus, the method is Galilean invariant. Some computational diffusion 
is introduced by the assignment of information from the grid to the particles, but 
the overall diffusion compares favorably with high-order Eulerian, difference 
methods. 

In the following sections, the formulation of FLIP-MHD in two or three space 
dimensions is described, the algorithm for solving MHD flow problems is outlined, 
and several computational examples of flow in two dimensions are presented which 
demonstrate FLIP-MHD’s Galilean invariance, and, .by comparison with high- 
order finite-difference approximations to convection, FLIP-MHD’s relatively low 
computational diffusion. 
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II. RESISTIVE MAGNETOHYDRODYNAMICS 

Consider, first, the equations for viscous, resistive MHD flow comprising a mass 
continuity equation, 

Faraday’s and Ampere’s laws, 

a momentum equation, 

(1) 

(2) 

(3) 

and an energy equation, 

dl 
Pz= -~V.u+Ip(V.u)~+~p(17.17)+rl(J.J), (4) 

where p is the mass density, B is the magnetic field intensity, J is the current den- 
sity, c is the speed of light, u is the fluid velocity, Z is the specific internal energy, 
and p is the fluid pressure. The symmetric rate-of-strain tensor, l7, is defined in the 
usual way, 

LT=$[Vu+Vu’]. (44 

The pressure is given by an equation of state, p = p(p, I). 
The transport coefficients are the kinematic shear viscosity p, the kinematic bulk 

viscosity L, and the resistive diffusivity q. The solenoidal condition on B, 

V.B=O, (5) 

is assumed as an initial condition. It is important that this property be preserved 
if the interaction of the field and the plasma be represented accurately. Otherwise, 
there will develop non-physical, accelerated motion parallel to the magnetic field 
c91. 

Equations (l)-(5), which describe the interaction of an ionized, collisional 
plasma with a magnetic field, compose the resistive MHD model. 
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III. FLIP MAGNETOHYDRODYNAMICS 

To model MHD flow using a particle-in-cell method one must represent the fluid 
and the field by assigning appropriate properties to particles. The choice that is 
made in FLIP is discussed below. 

A. The FLIP-A4HD Algorithm 

To solve magnetohydrodynamic flow problems using the particle-in-cell method 
requires the same four steps as for ordinary fluid flow: 

Lagrangian phase: 

1. Interpolate the particle data on to a grid to initialize the dependent 
variables p, u, B, and p at the grid points. The overlap of finite-sized 
particles with the cells of the computation mesh determine the allocation 
of particle properties to the grid points. 

2. Solve finite-difference approximations to Eqs. (l)-(4) to advance the 
solution one time step, from t to t + At. 

3. Interpolate the solutions of the MHD equations on the grid, Eqs. (l)-(4), 
to the particles. 

Convection phase. 

4. Move the grid through the particles to the position it will occupy on the 
next time step to model convection. 

One can compare this algorithm with the arbitrary Lagrangian-Eulerian (ALE) 
method for magnetohydrodynamics [13]. An ALE method also separates each 
computation step into two phases. In the first phase, the finite-difference equations 
are solved on a Lagrangian grid. In the second phase, convective transport due 
to relative motion between the grid and the fluid is computed by solving 
finite difference equations. This phase is the principal source of computational 
diffusion [S]. 

In the PIC method, steps 1 and 3 are added to the first phase of the ALE 
method, and step 4 replaces the second or convective phase. Lagrangian particles 
replace convective transport and eliminate one source of computational diffusion. 
However, Lagrangian particles add another, possible source of computational 
diffusion in step 3, in which the solutions are transferred from the grid to the 
particles. This error is discussed in Section IV. 

B. The FLIP Particles 

In the FLIP code, a particle is assigned a mass, mp, a momentum, mpup, an 
internal energy, ip, and a position, xp. The interactions among particles are 
calculated on a grid of arbitrarily-shaped, quadrilateral zones in two dimensions 
with vertices x~,~, 1 < i G N,, 1 <j< NY. The data for the calculation is the inter- 
polated particle data using a shape or assignment function. To simplify the inter- 
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polation when the zones vary in shape and size, each quadrilateral zone is mapped 
onto a unit square. The mapping in two dimensions corresponds to bilinear 
interpolation, 

x~5~rl~~5’C~1~vl’~xi+lj+rl’xi+lj+~1+~1~5’~C~1~?‘~x~+?‘x~+~I~ (6) 

where 4’ = < - i, r~’ = rl -j, and the mapping is defined for 0 d t’, q’, < 1. Note that 
xii maps onto 5 = i, 9 = j. 

C. The Interpolation Equation 

The shape function used in FLIP, S (“), is an n th order B-spline [lo]. The use of 
this shape function in PIC calculations is described in Birdsall and Langdon [ 111, 
Hackney and Eastwood [12], and Monaghan [3]. Some of these references 
interpret the shape function as giving the particle a finite size. In FLIP, this size is 
defined by the properties of the grid in the neighborhood of the particle in the 
following way. 

Consider the mass contained in a quadrilateral zone denoted by the index c, with 
centroid x,, and volume V,. (The natural coordinates of the centroid are (t’, $) = 
(f, i).) The mass is computed using the shape function, S’“‘, to calculate the overlap 
of the shape function associated with each particle with the zone, weighted by the 
mass of the particle. The tensor product interpolation formula that results from 
evaluating the overlaps in two dimensions is written, 

m,. = 1 mp fi ScnYtd(x,,) - td(x,)), ttl, 5’) = (5, v). Ua) 
< d=l 

The shape function, S”“, is a positive, symmetric function of the distance in natural 
coordinates between the two points x, and xp. S(“) has bounded support (n + 1)/2; 
when the distance between two points is greater than (n + 1)/2, S”” is zero. (While 
the support of S’“’ is constant in natural coordinates, it will vary in physical 
coordinates. Thus, the “size” of a particle is determined by the size of the zones it 
overlaps.) Further, S’“’ is normalized so that 

1 = c fl scn)t5dtx,) - 5”(x)) C’b) 
c d=l 

for any n and any x in the domain. That is, the values of S(“) at the grid points 
form a partition of unity. 

To simplify the notation in the following discussion, the interpolation weight 
given by Eq. (7a) is denoted by 

S & := fi P’(~d(x,) - (d(Xp’)), 03) 
d=l 

where xp and xpc are any two points on the domain. 
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D. FLIP-MHD 

To extend FLIP to MHD, one assigns a magnetic moment, lp, to each particle 
from which one can calculate a magnetization by interpolation, 

The magnetization is usually not solenoidal. If one computes the divergence of M 
by approximating the derivatives by finite differences and letting the mesh spacing 
approach zero, there will remain terms which depend upon the gradient of 9”) that 
are zero only when x,. = xp or 15(x,) - <(x,)1 > (n + 1)/2. Otherwise, the gradient of 
S is not zero, and the divergence will not be zero. 

Because M is not solenoidal, the magnetization cannot be used in place of the 
magnetic field. If it is used, there results an instability that causes the growth of 
oscillatory motion in the direction of strong magnetic fields [2]. Since a solenoidal 
field exerts no force along its own direction, the instability is caused, evidently, by 
the non-solenoidality of the magnetization. 

To initialize a problem, one must specify the magnetization, M. In some cases, 
this is very easy to do. For example, when the magnetic field, B, is uniform as in 
the examples described below, M and B are equal. When B is force-free with 
current, J, equal to zero, A4 is zero. However, in some cases the magnetic field 
corresponds to neither M nor J equal to zero. In such cases, one must solve for M 
from the identity, 

VxM=VxB. (10) 

That is, the current, J, is the data from which the magnetization, M, is initialized. 

1. Magnetization and the magnetic field, One can calculate a solenoidal 
magnetic field from the magnetization by subtracting the gradient of a scalar 
potential, 

B=M-V& (11) 

where +4 is given by 

V.n4=V2~. (12) 

The resulting B is solenoidal. 
The advantage of using the magnetic moment as a particle variable and 

calculating a solenoidal magnetic field by projection is that one is required to solve 
just one potential equation, whether the problem is in two space dimensions or 
in three. While examples are given for flow in two space dimensions only, the same 
formulation can be used to solve problems in three dimensions. 
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Using the relationship between the magnetic field and the magnetization, 
Eq. (1 1 ), one can write the magnetic field energy integral, 

ER=/dVf[W#] .B. (13) 

Applying Gauss’s theorem allows the explicit display of the boundary contribution, 

P dsin.Bq5. (14) s 

If one imposes the Dirichlet conditions, 4 = 0, the surface integral is, of course, zero. 
However, if n . B is required to be zero on s (i.e., s is a conductor), one should apply 
the Neumann conditions, given by 

n.Vd=n.M, (15) 

in solving the potential equation, Eq. (12), for 4, 
2. Equation of motion for the magnetization. On the grid, one solves one’s 

favorite approximations to the MHD equations for B. (The ones that are solved in 
FLIP-MHD are discussed in Refs. [l, 4, 13, 141.) One must then advance the 
magnetization in time. M and 4 can evolve separately, provided Eq. (11) is always 
satisfied. Thus, one can postulate an additional evolution equation either for 4 or 
for M. 

Several considerations guide the choice of the additional equation. For mathe- 
matical consistency, 4 must evolve as a scalar. For economy, the evolution equation 
for M should be explicit. For accuracy, the equations for M and 4 should have no 
terms which depend upon the mean flow velocity, or whose approximation will 
introduce such dependence. That is, one should avoid introducing convection 
terms, which typically introduce computational diffusion that depends on the mean 
flow speed. 

One evolution equation for 4, 

clearly satisfies the constraint that 4 evolve as a scalar and yields an equation for 
M written 

dM dB 
~=,+v.uv& (17) 

However, the second term in Eq. (17) requires evaluating a convection-like term, 
with all the attendant problems. For this reason, Eq. (16) is discarded. 

For plausibility, one should be able to identify some limit in which the equations 
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give an intuitively correct physical result. One can guess the correct physical result 
for a single particle. 4, B, and M should all be constants of the motion, so that, 

$0. 
Substituting Eq. (18) into the definition of 4, Eq. (1 1 ), one finds 

(19) 

(A similar equation was derived previously by Fogelson to describe the transport 
of concentration gradients [24].) In Eq. (19), the second term describes the change 
in VI$ due to strain. This term depends only on gradients of the velocity, and is 
unaffected by changes in the mean flow. If X denotes the Lagrangian coordinate of 
an element of the fluid, the term can be written 

(20) 

Its numerical evaluation neither requires up-winding as would a transport term, nor 
does it introduce diffusion. 

3. The magnetic moment interpolation equation. At this point in a computa- 
tion step, one has advanced in time the grid magnetization, but not the particle 
magnetic moments. To do so, one must derive an evolution equation for the 
particle magnetic moments. 

Differentiating the interpolation equation for the magnetization, Eq. (9) results in 
an implicit expression for the evolution of pP, 

(21) 

M, in Eqs. (9) and (21) is the average value of M(x) over the control volume, P’,, 

The support of S is defined in the Lagrangian frame as noted in Section B, and thus 
it satisfies the equation 

(The consequences of this definition are discussed in Ref. [4].) 
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One can define an approximate inverse to Eq. (21) that is consistent with the 
form of similar equations in FLIP 

This equation has the virtue that it is simple to solve and that it preserves global 
flux. (Equations (24) and (21) would be consistent were one to define the 
magnetization using a mass matrix, rather than a “lumped” mass matrix as in 
Eq. (91.) 

However, the substitution of Eq. (24) for Eq. (21) has the defect that it introduces 
some computational diffusion. Because only the changes in the magnetization are 
projected onto the particle using the approximate inverse, no zeroth order diffusion 
is introduced and the approximation is consistent when any order B-spline is used, 
not just nearest-grid-point interpolation (n = 0) as in classical PIC [2]. A different 
approach to removing the zeroth order diffusion than used in FLIP is described by 
Nishiguchi and Yabe [1.5].) 

IV. PROPERTIES OF THE FLIP-MHD MODEL 

A. Flux Conservation 

The proof that magnetic flux is conserved is trivial. One simply sums both sides 
of the approximate inverse, Eq. (24) over p, the particle index, to show that 

(25) 

Even though flux is conserved globally, there is diffusion of the change in the flux 
because of the substitution of the approximate inverse for the interpolation equa- 
tion. Recall that the change in the magnetization is transferred to the particles at 
the end of each time step by solving the approximate inverse equation, Eq. (24). 
The change is then transferred back to the grid to continue the calculation for the 
next time interval. This round-trip of the change in the magnetization from the grid 
to the particles and back results in the substitution of the result of a double 
interpolation, 

(26) 

for the grid solution even with a Lagrangian grid. The superscript L denotes the 
result of the numerical solution on the grid, and the superscript 1 denotes the result 
of the transfer of this solution from the grid to the particles and back. If one sums 
both sides of the equation over c and substitutes the normalization of S, Eq. (7b), 
and the definition of N,, Eq. (24) one can show that magnetization flux is 
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conserved. However, the substitution replaces each grid value by an average 
including contributions from all the neighboring grid points within the support 
of S. The effect of this averaging is similar to the effect of applying a diffusion 
operator written in conservation form [ 163. 

One can estimate the diffusivity in one dimension by placing one particle at the 
center of each cell. First compute the difference between the double interpolation 
result and the grid result, 

dM’ V! dML VL dM: V: 1 S-d=CL 
dt dt ci dt <. 

N T,,... (27a) 

The elements of the transfer matrix, T, are defined by, 

where a,,. is the Kronecker 6 function. The elements are easily evaluated for 
quadratic B-splines, yielding a weighted sum of contributions from neighboring grid 
points. The contributions, M, V,., to the sum, when expanded in a Taylor series 
about the value at x,, yield the diffusion-like expression, 

dM! V: dML Vk Ax2 d2(dM$ V,L/dt) c-cc=- 
dt dt 16 dX2 

+ O( Ax4), Ax:=x,+~-x,. (28) 

The double interpolation, which occurs once each time interval At, introduces an 
error which corresponds to diffusion of the change in magnetization with diffusivity 
Ax’/16 At. The achievable grid magnetic Reynolds number, Remagnetic, is limited by 
this numerical diffusion. The limit can be estimated from 

Re 14 Ax 
(29) 

where C= lul At/Ax is the material Courant number. Note that the approximation, 
Eq. (26), to the evolution equation for the magnetization, Eq. (17), is consistent 
because it is the rate of change of the magnetization that is being diffused, not the 
magnetization itself. 

This diffusivity does not depend upon the flow velocity. Thus, Galilean 
invariance is preserved, e.g., the solution is unaffected by the addition of a constant 
velocity to the fluid motion. 

B. Magnetic Energy Conservation 

One can identify three sources of error in magnetic field energy conservation in 
FLIP-MHD. There is an error caused by the use of the approximate inverse, 
Eq. (24), and truncation error in the difference approximation to Eq. (19). These 
errors contribute to errors in the conservation of energy through steps 2 and 3 of 
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the Lagrangian phase of a computation cycle. There is also a dependence of the 
magnetic field on the grid that causes an error in step 4, when convection is 
calculated. Through the interpolation, Eq. (9), the magnetic field depends upon the 
number and placement of the grid points. Thus, there is a change in magnetic 
energy when particles move from cell to cell in step 4. 

One can contrast this with, the conservation of kinetic energy in FLIP, where the 
particle kinetic energy, defined by 

k, := impui, (304 
does not change as the particle moves from cell to cell. The corresponding particle 
magnetic energy 

contains contributions from interactions among particles. That is, the energy 
depends upon the magnetic field strength, which is a grid quantity. 

Because of the dependence of the particle magnetic energy on the grid, it is 
impossible to reduce the energy error to a quadratic form similar to the error term 
in the kinetic energy in FLIP. A brief review of the analysis of the kinetic energy 
error in FLIP will indicate why. 

Recall the definition of kinetic energy in FLIP 

K, := 4 rn”Ua. Wb) 

The subscript u labels the vertices of the mesh where the velocities are stored in 
FLIP [ 11. The vertex velocity, U,, is defined by 

u,= 1, mPUPSPv 
C, mpSpv ’ (3Oc) 

(The sum in the denominator defines the vertex mass, m,.) The total particle kinetic 
energy is larger than the grid kinetic energy, 

1 k, - 1 K, = 1 imp up . up’ 1 ( S,, 6,. - S,, S,., ) b 0, (32) 
P u P. P’ ” 

but the rates of change of the particle and grid kinetic energies are equal: 

~~-~~=,rnpup.~-,rn”U”.~=O. 
P ” 

Evidently, the energy surfaces on which the solution evolves for the particles and 
the grid remain a constant distance apart for a time step. (There are errors in 
the total kinetic energy when the time derivatives are approximated by finite 
differences. These are evaluated in Refs. [ 1,43.) 
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By an analogous analysis for the magnetic field, one finds that, in contrast to the 
kinetic energy, the particle and grid magnetic energies are equal but the rates of 
change are not. Further, the particle magnetic energy, Eq. (31a) includes contribu- 
tions from interactions among particles that are absent from the particle kinetic 
energy. 

The grid magnetic energy, which is evaluated by discretizing the magnetic energy 
integral, Eq. (13), 

can be used to show that the total particle and grid magnetic energies are equal, 

xe,=x ~pLp.~B,.S,,r=~ $B,..M,.V,.=~ E,.. (34) 
P P < c ‘ 

However, the rates of change of the particle and grid magnetic energies are not 
equal. The difference is calculated from Faraday’s law, Eq. (2), the approximate 
inverse, Eq. (24), and the definitions of the particle and magnetic energies, 
Eqs. (31a) and (31b). The difference is 

The transfer matrix, T, is defined in Eq. (27b). Because the terms in the sum are a 
product of the magnetic intensity and the magnetization, the total energy changes 
for the particles and for the grid are not equal. However, the eigenvalues of the 
transfer matrix are positive and lie in the interval 0 to N, [ 1,4]. Thus the error in 
the magnetic energy due to double interpolation is opposite in sign to the change 
in grid magnetic energy and smaller in magnitude. 

The energy error given by Eq. (35) can be added to the particle internal energy, 
particle by particle, to force conservation of total energy. The addition to the 
particle internal energy is given by 

The sums over c and c’ comprise the cells within the support of the particle. The 
addition is computed simultaneously with the evaluation of the approximate 
inverse, Eq. (24). 

Conservation of total energy through an entire time step is imposed through step 
4 by convecting the sum of particle internal and magnetic energies. At the end of 
step 3, the particle magnetic energy, Eq. (31a), is added to the particle internal 
energy, using the value of the magnetic field computed on the grid at the end of 
step 2. At the beginning of the next time step, i.e., at the end of step 1, the particle 
magnetic energy is computed using the value of the magnetic field computed by 
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solving Eq. (11). The particle magnetic energy is then subtracted to recover the 
particle internal energy. Errors in magnetic field energy are thus absorbed by 
adjustments in the internal energy. 

Since the particle internal energy and magnetic energy are conserved as the 
particles stream through the grid, and kinetic energy is conserved separately, con- 
servation of the total energy is enforced. One difference between FLIP-MHD and 
Eulerian formulations written in conservation form is that the magnetic and kinetic 
energies are conserved independently. This avoids a common problem in high-speed 
flows, where small relative errors in the kinetic energy are large relative to the 
internal energy and can drive the internal energy negative. 

The sign of the internal energy correction is same as the sign of the change in 
MC VC. A decrease in the magnetic energy results in a decrease in the particle 
internal energy. In strong magnetic fields or cold fluids, one anticipates that the 
correction will sometimes drive the internal energy of individual particles negative. 
This is not observed to happen in the examples below. 

IV. RESULTS 

A. Contact Discontinuity 

A notable property of the particle-in-cell method is its ability to resolve contact 
discontinuities, even in highly distorted flows [2]. FLIP-MHD extends this 
capability to discontinuities in the magnetic field by introducing a Lagrangian 
representation for the field. A uniform flow problem with a discontinuity in the 
magnetic field direction illustrates this capability. 

The FLIP calculation for magnetohydrodynamic flow in two dimensions is 

FIG. 1. The initial magnetic field profile in y is shown. The domain is periodic in y, with 50 zones 
in each period. The x-coordinate corresponds to f the mesh width in x. 
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Y 

FIG. 2. The magnetic field profile in y is shown after the fluid has traveled twice the length of the 
mesh in y. There are no visible changes in the profile from the one shown in Fig. 1. 

performed on a 10 x 50 mesh, with equal mesh spacing in x and y and periodic 
boundary conditions in y, the direction with 50 zones. Initially, the uniformly- 
flowing, constant-density fluid is in pressure equilibrium, and the magnetic field is 
equal to B = Bon, in the lower half of the domain and B = - B,,nz in the upper half. 
The sound speed, a, is 100 times the Alfven speed, A = E/(47~p)‘/~, and the Mach 
number, M= u/a, is equal to 0.32. 

In Fig. 1, the magnetic field profile in y is plotted at the initial time at an x-coor- 
dinate corresponding to 5 the mesh width. The profile is a mollified square wave. 
The mollification is a result of the quadratic interpolation in Eq. (9). In Fig. 2, the 

b.0 i.5 i.0 i.5 lb.0 12.5 li.0 

FIG. 3. The total variation of the magnetic field as calculated from Eq. (27) is shown. The time inter- 
val, 0 d r < 12.5, is the time required for the fluid to move two periodic intervals in y. The variation, dB, 
oscillates about a mean value that is nearly constant in time. 
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magnetic field is plotted at a time corresponding to a fluid displacement twice the 
height of the mesh. There is no diffusion. Errors in the approximate inverse, 
Eq. (24), have no effect because the particle magnetic moment is a Lagrangian 
invariant when there are no gradients in the flow velocity in the direction of the 
magnetic field. 

A direct measure of the diffusion is given by the integral of the variation in the 
magnitude of the field over the domain, 

dB = s (VW, Y, t)l - IW Y - ut, ON )’ dx dy 
IB(x, y-u& O)l* 

Any diffusion causes the variation to increase. The variation is plotted in Fig. 3. 
(A time of 12.5 problem units corresponds to 2 fluid transit times.) The oscillations 
in the variation have a period equal to the time for the fluid to move one cell. The 
variation is greatest when the zero value of the magnetic field lands at the center 
of a cell, and it is least when the zero lands at a cell edge. The average value of the 
variation is constant. 

With a non-zero resistivity in Eq. (2), the variation increases in time as shown in 
Fig. 4. The resistive diffusivity corresponds to grid magnetic Reynolds number 
(computed similarly to Eq. (29)) of 30 and causes an increase in the variation 
by 400%. The sensitivity of the results to added diffusion indicates the purely 
numerical diffusion of contact discontinuities in FLIP-MHD calculations has to be 
very small or negligible to produce the results in Figs. 1-3, as expected. 

B. Rayleigh-Taylor Instability 

The FLIP-MHD code is verified, first, by comparison with the linear stability 
theory for the Rayleigh-Taylor instability. On a domain in two space dimensions 
with 30 x 15 zones and periodic boundary conditions in y, a heavy fluid is 

z 
d 

:: 
d 

mL” 
d 

0 
do 
<1 
u= 

?? 
d 

8 
d 

0.0 2.5 5.0 7.5 10.0 12.5 15.0 
t 

FIG. 4. The variation of the field is shown with resistive diffusion. The grid magnetic Reynolds 
number, Eq. (29), is 30. The variation increases by 400% during two fluid transit times. 
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supported against gravity, which acts in the negative x-direction, by a light fluid. 
The pressure is initially constant. The potential energy oscillates in time, but this 
appears to have no effect on the results. 

Where p, and pz are the densities of the light and heavy fluids, g is the gravita- 
tional acceleration, and k is the wave number of the perturbation of the interface 
between the two fluids, the growth rate is given by [23] 
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FIG. 5. The particles of the heavy fluid (depicted by dots) and magnetic field lines (depicted by lines) 
illustrate the initial conditions for a calculation of the Rayleigh-Taylor instability. 
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The Alfven number, A = B/Zn(p, + pZ), is defined using the average density at the 
interface, and kpnrallel = k . B/B. With ka/(kg)“’ = 458, kA/(kg)‘j2 = 0.512, and the 
Atwood number, A, = (pZ - p1)/(p2 + p,) = 0.6, the results are illustrated in Figs. 5 
and 6. In Fig. 5, the particles of the heavy fluid are overlaid on contours of constant 
magnetic flux or field lines at the initial time. After a time, kAt = 4.67, the heavy 
particles have formed a spike and the field lines have been bent in the process as 
shown in Fig. 6. 

The comparison between theory and computation is summarized in Table I. The 

FIG. 6. The growth of the Rayleigh-Taylor instability for the initial conditions shown in Fig. 5 
causes the heavy-fluid particles (depicted by dots) to form a spike and to bend the magnetic field lines 
(depicted by lines) by kAr = 4.67. 

581/96/l-13 
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TABLE I 

Comparison of Theoretical and Computed Growth Rates 
for the Rayleigh-Taylor Instability 

Magnetic field Theoretical growth Computed growth 
strength-(kd)‘/kg rate-y/(kg)“’ rate--y/(kg)‘12 

0.0 0.774 0.76 
0.1675 0.656 0.61 
0.60 0.0852” 0.098 
0.62 0.0 0.072 

a With k’ replacing k in Eq. (38). 

predicted and computed growth rates agree within expected error except for the 
case with (/~,4)~ = 0.6 kg. This field corresponds to zero growth rate theoretically, 
but a finite growth rate computationally. It can be shown that truncation error in 
the spatial differencing is accounted for by replacing k by k’ = sin(k Ax/2)/Ax/2. 
When k’ is substituted for k, the growth rate should be zero for IBI = 1.92. 
However, even a stronger magnetic field, JBI = 1.95, does not suppress the 
instability completely. It is as though there were resistive diffusion, in which case 
one would expect a slowly growing instability with IBI > 1.89. 

Suppose the resistivity were due to numerical dissipation. One could estimate the 
magnitude of this numerical resistivity by imposing a physical resistivity just large 
enough to double the growth rate of the instability. By computation, the resistivity 
needed to double the growth rate corresponds to a magnetic Reynolds number 
approximately equal to 250 and a grid magnetic Reynolds number as defined by 
Eq. (29), equal to 17. The agreement with the predicted value suggests the source 
of the resistivity is the diffusion due to the use of the approximate inverse to 
calculate the particle magnetic moments. 

The results of a calculation performed on an Eulerian grid are shown in Fig. 7, 
and those of a calculation performed on a Lagrangian grid are shown in Fig. 8. The 
calculations are shown at kAt = 2.8, just before some of the cells in the Lagrangian 
grid lose convexity. The growth of the magnetic energy and the growth of the 
enstrophy, defined by 

E= [ [Vxu12d2x, (39) 

are essentially equal. (The enstrophy is used to calculate the growth rates listed in 
Table I.) The error in the conservation of the total energy, due to truncation error 
in the approximation of Eq. (19), is equal to less than 1% of the magnetic energy 
change. There are small differences between the Lagrangian and the Eulerian 
calculations that are probably accounted for by the distortion of the Lagrangian 
grid. Note that the particles do not move from cell to cell in the Lagrangian 
calculation. The calculation is initialized with nine particles per cell, and there are 
the same nine particles per cell at the end. 
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FIG. 7. The heavy particles in a Rayleigh-Taylor instability calculation are polotted on the Eulerian 
computation mesh at kAt = 2.8. 

C. Confined Eddy 

The confined eddy problem, which is suggested by a discussion in Moffatt [19] 
on the effect of plane, differential rotation on an initially uniform magnetic field, is 
used to test the Galilean invariance of the FLIP method. If the numerical results 
depend on the relative motion between the fluid and the grid, it has to be due to 
numerical error because the Navier-Stokes and the resistive magnetohydro- 
dynamics equations are Galilean invariant. However, finite-difference approxima- 
tions to them typically are not. 

The confined eddy has been studied extensively. Solutions of the kinematic 
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FIG. 8. The heavy particles for a Lagrangian calculation of the same problem as in Fig. 7 are plotted 
on the Lagrangian computation mesh. The distortion of the mesh illustrates why a Lagrangian mesh is 
unsuitable for highly distorted flow. Any shear in the flow causes a Lagrangian grid to fail eventually. 

problem show that rigid body rotation of a fluid winds the field into a tight, double 
spiral in the x---y plane [20]. In the limit of infinite conductivity, the field is 
completely excluded from the rotating region. When the conductivity is finite, 
closed loops appear and disappear as flux is destroyed within the totating region. 
In general, flux is expelled from flows with closed streamlines. 

In fluid dynamics experiments, the flows are more complex than the kinematic 
case considered by Parker in Ref. 20. In experiments on forced, circular shear 
layers, the vortex sheet at the surface of the eddy is unstable and forms a line of 



FLIP MHD 183 

vortices. Thus, secondary eddies are a prominent feature of the steady, driven flow 
[21]. Numerical solutions with FLIP of initial value calculations of the confined 
eddy problem display the nonlinear evolution of the instability from many small, 
secondary eddies to a few large eddies [S]. (An important result of this earlier 
study is the demonstration that angular momentum is conserved, and vorticity 
preserved by FLIP.) 

Initial-value calculations of the self-consistent effect of plane differential rotation 
on an initially uniform field are performed. The field is weak, A/a = 10p3, and flow 
is low-speed, u/a = 0.25, so that the evolution of the flow should be very similar to 
the incompressible, unmagnetized case. 

The initial velocity for the eddy problem is given by, 

w x (r - ro) Ir-r,l <R u= 
0 1 Ir-r,l >O ’ (40) 

where o is the angular velocity of the eddy. The center of the eddy is placed at the 
center of a computational domain with dimensions 4R x 4R. 

In Fig. 9, the magnetic field lines (contours of constant vector potential A, where 
B = V x A) on a 50 x 50 zone mesh with FLIP are shown after a half revolution 

FIG. 9. Magnetic lield lines from a FLIP-MHD calculation of the confined eddy are plotted after a 
half revolution of the eddy. The magnetic Reynolds number is 125. 
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(A) (B) 

FIG. 10. After a full revolution of the eddy, the magnetic geld lines calculated with FLIP-MHD form 
the complex patterns shown. The results in (A), for a stationary fluid, and in (B), for a moving fluid, 
are similar in symmetry and structure if different in detail. 

of the eddy. As determined by the specified viscosity and resistivity, the Reynolds 
number is 2,500 and the magnetic Reynolds number is 125. As in the kinematic 
case, the motion winds the field into a tight, double spiral. A Kelvin-Helmholtz 
instability causes secondary eddies to form at the periphery of the eddy. After one 
revolution, shown in Fig. lOA, the magnetic field is further expelled from the interior 
of the eddy and concentrated at the periphery. Large gradients in the field oppose 

(A) (B) 
FIG. 11. Particles forming the eddy at the initial time in the FLIP-MHD calculation have moved 

into the pattern of primary and secondary eddies shown after one revolution of the eddy. The particles 
in (A) and (B) correspond to the magnetic tields in Figs. 10A and lOB, respectively. 
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the motion of the eddy, and islands of closed llux have formed due to dissipation 
in the calculation. 

The particles originally within the eddy are plotted in Fig. 11A at the time corre- 
sponding to Fig. 10A. The particles show the nonlinear evolution of the secondary 
eddies, as the eddies pair to form large, secondary eddies. The secondary eddies are 
also visible in the vorticity contour plots, shown in Fig. 12A. The secondary eddies 
also expel the flux, increasing the area within which the field is reduced below its 
initial value. 

FLIP replaces convection by the motion of particles through a computation 
mesh. The particle motion and the numerical solution of the flow equations on a 
Lagrangian grid are invariant under the addition of a constant frame velocity, and 
so it would appear that FLIP results should be frame independent. 

To test the Galilean invariance of FLIP-MHD, the calculation above is repeated 
with a constant velocity added to the initial fluid velocity. In Fig. 13, there are 
shown the stream lines from two calculations for the confined eddy problem, the 
one described above shown in Fig. 13A, which was performed in a stationary frame, 
and the other shown in Fig. 13B, which was performed in a moving frame. The 
frame velocity for the moving frame calculation, 

OLY u=p (41) 

is chosen so that the eddy moves one period in y, L,, in one revolution of the eddy. 
The frame velocity and the velocity of flow in the eddy are of comparable 
magnitude. 

Also in Fig. 1 lB, there are plotted the particles that were inside the eddy initially. 

(A) (IV 
FIG. 12. Contours of constant vorticity calculated by FLIP-MHD are plotted after one rotation of 

the eddy. The contours in (A) and (B) correspond to the particles in Figs. 11A and llB, respectively. 
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There is the same fourfold symmetry of the particle positions in the moving frame 
calculation as there is in the stationary frame calculation, Fig. llA, particle by 
particle, even though there are differences in the positions of individual particles, 
especially those to the outside of the secondary eddies. There are very small 
differences between the magnetic fields, Fig. 10B compared with Fig. fOA, and 
vorticities, Fig. 12B compared with Fig. 12A, in stationary and moving frames. 

Another measure of the difference between the calculations is given by the ohmic 
heating rate, defined by 

H= qJ2 dV; (42) 

ohmic heating is observed to be greater with lower viscosity and lower resistivity. 
When diffusion is less, higher gradients in the magnetic field develop and more 
heating results. Conversely, increases in numerical diffusion result in decreases in 
heating. The heating for the stationary fluid is shown in Fig. 14, and the moving 
fluid in Fig. 15. There are differences in detail in the heating rates, but overall the 
heating is very similar for the two calculations. 

In finite difference calculations, the invariance is broken by a velocity dependence 
introduced in approximating the convective derivative. For example, donor cell 
convection introduces a numerical diffusion of momentum, 

v- I”1 Ax 

? . 

(A) 

- 

(B) 

(43) 

FIG. 13. The streamlines calculated by FLIP-MHD after one rotation are plotted in (A), for a 
stationary fluid, and in (B), for a moving fluid. The contours in (B) clearly show the dominance of the 
imposed, uniform flow almost everywhere. 
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t 

FIG. 14. The ohmic heating calculated with FLIP-MHD, defined by Eq. (42), is plotted for the 
contined eddy in a stationary fluid. The time, I = 12.5, is the rotation period for the eddy in problem 
units. 

that depends upon the velocity relative to the grid, while Lax-Wendroff introduces 
a dispersion that depends upon the velocity. Even in more sophisticated limiter 
methods like van Leer’s, which use donor cell advection in regions of strong 
gradients, the errors depend upon the relative velocity. This velocity dependence 
means that numerical solutions are different in coordinate systems in constant 
motion relative to each other, contrary to physics. 

For comparison with the FLIP results above, there are shown in Figs. 16A and 
17A the magnetic field lines and vorticities for a calculation performed with PLUTO 
in a stationary frame, and in Figs. 16B and 17B for a calculation performed in a 

FIG. 15. The ohmic heating is plotted for the confined addy in a moving fluid. The peak value at 
t = 7.5 is the same as for the stationary fluid, shown in Fig. 14, as is the value at r = 12.5. 
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(A) (B) 

FIG. 16. The magnetic held lines calculated with PLUTO for the confined eddy problem are 
shown at the end of one rotation period. The PLUTO calculations are in a stationary fluid, (A), and 
in a moving fluid, (B), with the same initial and boundary conditions as for the FLIP-MHD 
calculations in Figs. 10-15. The loss of symmetry in (B) results from a velocity-dependent diffusion in 
the approximation of convection. 

moving frame. The initial conditions for the FLIP and PLUTO calculations are 
identical. 

In PLUTO, the solution of Faraday’s law in the Lagrangian frame is followed by 
an advection step, which approximates the equation 

i/ dVB= -j dsnx(uxB), 
V s 

(44) 

where V is the control volume, s is its surface, and n is the outward-directed, unit 
normal to the surface. 

PLUTO substitutes a finite-difference approximation to the convective transport 
for the particle transport in FLIP. Otherwise, PLUTO and FLIP are identical. The 
approximation is a generalization of the PPM method [ 183 to a nonrectilinear 
mesh by Meltz [17]. Since the mesh is rectilinear in the case shown, the method 
reduces, essentially, to the PPM method. 

There is a much greater effect of the frame motion in the Eulerian calculations 
than there is in the FLIP calculations. The most obvious difference is the loss of 
symmetry in the moving frame results, Figs. 16B and 17B, compared with the 
stationary frame results, Figs. 16A and 17A. One notes that the flow velocity relative 
to the grid is different on the right and left sides of the domain in the moving frame 
calculation. On the right side, where eddy and frame velocities add, the relative 
motion between the fluid and the grid is much greater than on the left side, where 
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(A) 0-N 

FIG. 17. The vorticity contours calculated with PLUTO corresponding to Fig. 16 are shown. For a 
stationary fluid, (A), the PLUTO and FLIP-MHD results, Fig. 12, are similar. For a moving fluid, (B), 
the symmetry is lost in the PLUTO results. 

eddy and frame velocities subtract. The differences between the right and left sides 
in Figs. 16B and 17B are evidence of a velocity dependence in the Eulerian calcula- 
tion that is absent in the FLIP calculation. With less accurate finite-difference 
advection schemes, the loss of symmetry is even more obvious. 

What kind of error can there be in the FLIP calculations that causes a difference 
between stationary and moving frame calculations, yet is independent of the 
velocity? Consider repeating the stationary FLIP calculation with the grid shifted 
by a fraction of a mesh spacing. Because the number of particles is finite, the result 

FIG. 18. The heating calculated with PLUTO is shown for a stationary fluid. The maximum heating 
rate is about 10% of the FLIP-MHD rate. 
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FIG. 19. The heating calculated with PLUTO is shown for aa moving fluid. The peak heating is 
reduced by 40% from the reult for a stationary fluid, Fig. 18. 

of interpolating the particle data on to the grid; for example, the magnetization 
from Eq. (9), would be different on the shifted grid than on the unshifted grid. 
Because of small differences in the projected data early in the evolution of the eddy, 
there would be differences in the subsequent evolution of the eddy because of the 
instability of the flow. (One would also expect the differences to decrease as the 
number of particles per cell increases.) 

In the moving frame calculation, the motion of the particles through the grid 
causes their position relative to the grid to be different from the stationary case 
each time step of the calculation. Thus, the results in the stationary and moving 
fluid cases are different, even though there is no velocity dependent error. The com- 
parison of the stationary and moving fluid cases demonstrates that the differences 
are very small. 

The velocity dependent errors in the Eulerian calculations also increase the 
numerical viscosity in the moving frame calculations. The heating, which is 
observed in other calculations to increase with increasing Reynolds number, 
is 50% lower in the moving fluid, shown in Fig. 19, than in the stationary fluid 
Eulerian calculation, shown in Fig. 18. The heating with FLIP, shown in Figs. 14 
and 15, is 10 times as large, and there is no significant difference in the heating in 
the stationary and moving fluid calculations with FLIP. 

V. DISCUSSION 

FLIP shares Galilean invariance with several other methods. Pure, grid-free par- 
ticle methods, like SPH, are frame-independent, as are spectral methods. Compared 
with SPH, FLIP-MHD is more suitable for bounded flow problems and, perhaps, 
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is better able to represent singularities in the flow, especially if one uses the adaptive 
grid feature of FLIP. 

Since FLIP differs from PLUTO only by the use of particles to model convec- 
tion, the incremental cost of using particles is measured by differences in execution 
time on comparable problems. For the confined eddy problem on a 50 x 50 grid, 
FLIP requires -300s while PLUTO requires N 170s. FLIP execution times are 
roughly 75 % greater. On the other hand, more than twice as many grid points are 
required to yield the same accuracy with PLUTO as with FLIP in problems with 
flow, because of the greater numerical diffusion in the convection phase. In 
problems without significant flow, for example, in equilibrium calculations, 
PLUTO would give comparable accuracy at lower cost. 

Although FLIP’s performance is already very good, improved performance 
would result from finding a better way to evaluate the evolution of the particle 
magnetic moment, Eq. (21). The approximate inverse, Eq. (24), appears to limit the 
magnetic Reynolds number that can be modeled and to be the source of dissipation 
of magnetic field energy. 
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